

The PDFBox logo showing a toolbox.

 PDFBox, the brand text.

 	Blog

 Documentation

 	

 Migration

	

 Getting Started

	

 Dependencies

	

 Command-Line Tools

	

 FAQ

	

 API Docs via javadoc.io

 PDFBox 3.0 Migration Guide

Work in progress! This is guide will be improved over time. If you believe there is
a missing topic, open an issue or help us with a contribution to improve the guide.

This guide describes the updates in Apache PDFBox 3.0 release. Use the information provided to upgrade your PDFBox 2.x applications
to PDFBox 3.0. It provides information about the new, deprecated and unsupported features in this release.

Java Versions

PDFBox 3.0 requires at least Java 8. Testing has been done up to Java 19.

Dependency Updates

Apache Xmpbox no longer depends on javax.xml.bind.jaxb-api. All test classes were updated to use JUnit 5.

All libraries on which PDFBox depends are updated to their latest stable versions:

	Bouncy Castle 1.75
	Apache Commons Logging 1.2
	picocli 4.7.4

For test support the libraries are updated to

	JUnit 5.10.0
	JAI Image Core 1.4.0
	JAI JPEG2000 1.4.0
	Apache JBIG ImageIO Plugin 3.0.4
	Apache Commons IO 2.13
	Apache Log4j 2.20.0

General Changes for PDFBox 3.0

This section explains the fundamental differences between PDFBox 3.0 and 2.x releases.

Deprecated APIs and Components

All deprecated APIs and components from PDFBox 2.x have been removed in PDFBox 3.0. Deprecated APIs in
PDPageContentStream have been kept but you are encouraged to replace them with the non deprecated calls
as they are treated to be of internal use only.

New maven module for IO-classes

All basic classes used for io-operations were moved to a separate module for a shared usage.

 <dependency>
 <groupId>org.apache.pdfbox</groupId>
 <artifactId>pdfbox-io</artifactId>
 </dependency>

The whole code was overhauled including the following changes:

	switch to java.nio
	add support for memory mapped files for reading
	use the origin source when creating a new reader to process parts of it
	read operations no longer use scratch files
	provide an interface to implement an individual class to read an pdf
	provide an interface to implement an individual cache holding streams when creating/writing a pdf

Reader implementations

PDFBox offers the following implementations of the interface org.apache.pdfbox.io.RandomAccessRead to be used as source to read a pdf:

	org.apache.pdfbox.io.RandomAccessReadBuffer

RandomAccessReadBuffer stores all the data in memory. It is backed by the given byte array or ByteBuffer. Using the constructor with an InputStream copies the data to the buffer. Internally the data is stored in a chunk of ByteBuffers with a default chunk size of 4KB.

	org.apache.pdfbox.io.RandomAccessReadBufferedFile

RandomAccessReadBufferedFile is backed by the given file. It has an in-memory cache using pages with a size of 4KB. The cache follows the FIFO principle. If the the maximum of 1000 pages is reached the first added page is replaced with new data.

	org.apache.pdfbox.io.RandomAccessReadMemoryMappedFile

RandomAccessReadMemoryMappedFile uses the memory mapping feature of java. The whole file is mapped to memory and the maximum allowed file size is Integer.MAX_VALUE.

There is a known issue with locked files after closing the memory mapped file on windows. PDFBox implements its own unmapper as a workaround.

Implementing your own reader

If there is any need to implement a different reader one has to implement the interface org.apache.pdfbox.io.RandomAccessRead. It shall be done thread safe to avoid issues in multithreaded environments.

Writer implementations

PDFBox offers the following implementation of the interface org.apache.pdfbox.io.RandomAccess to be used to write and read data.

	org.apache.pdfbox.io.RandomAccessReadWriteBuffer

RandomAccessReadWriteBuffer extends the class RandomAccessReadBuffer and stores the all the data in memory as well. The implementation adds the ability to write data to the buffer which is automatically expanded by a new chunk.

Stream cache

PDFBox 3.0.x no longer uses a separate cache when reading a pdf, but still does for write operations. It introduces the interface org.apache.pdfbox.io.RandomAccessStreamCache to define a cache factory in a more flexible way.

Provided implementations

	org.apache.pdfbox.io.RandomAccessStreamCache

RandomAccessStreamCacheImpl is a simple default implementaion using RandomAccessReadWriteBuffer as buffer.

	org.apache.pdfbox.io.ScratchFile

The well known class ScratchFile is another implementation for a cache factory. It can be configured to use memory only, temp file only or a fix of both.

org.apache.pdfbox.io.MemoryUsageSetting

The MemoryUsageSetting parameter within the loadPDF methods was replaced by a parameter using the new functional interface StreamCacheCreateFunction to encapsulate the caching details within the IO package. IOUtils provides two variants of a possible cache for convenience. The memory only one uses RandomAccessStreamCache and the temporary file only uses ScratchFile as cache buffer factory. The newly introduced loader uses a memory only cache as default if the caller doesn't provide any cache.

Implementing your own stream cache

If there is any need to implement a different cache one has to implement the interface org.apache.pdfbox.io.RandomAccessStreamCache. It shall be done thread safe to avoid issues in multithreaded environments.

Use Loader to get a PDF document

The new class org.apache.pdfbox.Loader is used for loading a PDF. It offers several methods to load a pdf using different kind of sources. All load methods have been removed from org.apache.pdfbox.pdmodel.PDDocument. The same is true for loading a FDF document.

The most flexible way is to use an instance of RandomAccessRead such as the following sample:

 try (PDDocument document = Loader.loadPDF(new RandomAccessReadBufferedFile("yourfile.pdf")))
 {
 for (PDPage page : document.getPages())
 {

 }
 }

org.apache.pdfbox.Loader provides two other kind of load methods for your convenience.

	using a byte array as input

If a byte array is provided as source PDFBox uses org.apache.pdfbox.io.RandomAccessReadBuffer to hold the data. The byte buffer is backed by the given byte array.

	using a file as input

If a file is provided as source PDFBox uses org.apache.pdfbox.io.RandomAccessReadBufferedFile to wrap the source data using the in-memory cache as described above.

Changes when saving PDF

Compressed saving by default

When saving a PDF this will now be done in compressed mode by default. To override that (e.g. if you want to create a PDF/A-1b document) use PDDocument.save with CompressParameters.NO_COMPRESSION.

Don't use the source as output

The input file must not be used as output for saving operations. It will corrupt the file and throw an exception as parts of the file are read the first time when saving it.

Reduced memory usage

Incremental Parsing

PDFBox now loads a PDF Document incrementally reducing the initial memory footprint (on demand parsing). This will also reduce the memory needed to
consume a PDF if only certain parts of the PDF are accessed. Note that, due to the nature of PDF, uses such as iterating over all pages,
accessing annotations, signing a PDF etc. might still load all parts of the PDF overtime which might consume a significant amount of memory.

Do not try to access parts of the document after the PDDocument object has been closed, because this may lead to incorrect results, as shown in PDFBOX-5720.

Improved IO operations

The introduction of the new io classes has a positive impact on the memory usage. Especially the re-usage of the source for reading parts of it instead of using intermediate streams reduces the memory footprint significantly.

Further optimizations

There were a lot of changes and optimizations which have a more or less huge impact on the memory consumption.

Static instances for Standard 14 fonts removed

The static instances of PDType1Font for the standard 14 fonts were removed as the underlying COSDictionary isn't supposed to be immutable which led to several issues.

A new constructor for PDType1Font was introduced to create a standard 14 font. The new Enum Standard14Fonts.FontName is the one and only parameter and defines the
name of the standard 14 font for which the instance of PDType1Font is created for. That instance isn't a singleton anymore and has to be recreated if necessary or cached
by the user if suitable.

Changes to color methods

The int triple overloads of the setStrokingColor and setNonStrokingColor methods of PDAbstractContentStream, with inputs representing RGB colors defined in the 0-255
range, have been removed. While usages passing in int triples will compile (thanks to implicit casting of the int values to float), an IllegalArgumentException can be
thrown at runtime as the float overloads of these methods accept only values in the range 0-1.

To retain RGB colors defines as 0-255 integer triples, construct a java.awt.Color instance and use the relevant overload. Alternatively, convert values to the 0-1
range and define using float triples instead.

Changes to annotation classes

Instead of using the PDAnnotationTextMarkup, PDAnnotationSquareCircle or the PDAnnotationMarkup classes when creating certain annotations, use their subclasses PDAnnotationCaret, PDAnnotationFreeText, PDAnnotationInk, PDAnnotationPolygon, PDAnnotationPolyline, PDAnnotationSound, PDAnnotationCircle, PDAnnotationSquare, PDAnnotationHighlight, PDAnnotationSquiggly, PDAnnotationStrikeout and PDAnnotationUnderline.

Changes in Common Functions

Interactive Forms

When accessing AcroForms using PDDocumentCatalog.getAcroForm() a number of fix ups are applied aligning PDFBox with most of the default behaviour
of Adobe Reader. If you'd like to bypass this use PDDocumentCatalog.getAcroForm(null).

The fix ups include

	setting default font resources if they are not already part of the AcroForm
	create form fields from orphaned widget annotations under certain conditions
	create the normal appearance stream under certain conditions

You can lookup the details in the org.apache.pdfbox.pdmodel.fixup package of the source distribution and also create your own fix up(s).

Changes in PDFBox App

The command line interface for the PDFBox App has been rewritten. As a result

	the individual commands have been changed
	passing input and output files have been changed from using parameters to using options/flags to reduce the ambiguity
	all commands now return an exit code
	all commands now support passing -h or --help to display usage information
	all commands now support passing -V or --version to display the version information

Changes in PDFDebugger

The following features were added to the PDFDebugger:

	text extraction of the selected page
	detailed information about the glyph metrics used by text extraction
	text stripper text position
	text stripper beads
	approximate text bounds
	glyph bounds

	new tree view showing the cross reference table information for all indirect objects

 Table of Contents

 	Java Versions
 		
	Dependency Updates
 		
	General Changes for PDFBox 3.0

 	Deprecated APIs and Components
 		
	New maven module for IO-classes
 		
	Use Loader to get a PDF document
 		
	Changes when saving PDF
 		
	Reduced memory usage
 		
	Static instances for Standard 14 fonts removed
 		
	Changes to color methods
 		
	Changes to annotation classes
 		

 		
	Changes in Common Functions

 	Interactive Forms
 		

 		
	Changes in PDFBox App
 		
	Changes in PDFDebugger
 		

 Copyright © 2009–2024 The Apache Software Foundation. Licensed under the Apache License, Version 2.0.

Apache PDFBox, PDFBox, Apache, the Apache feather logo and the Apache PDFBox project logos are trademarks of The Apache Software Foundation.

