

JavaScript is disabled on your browser.

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

	Prev Class
	Next Class

	Frames
	No Frames

	All Classes

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

org.apache.pdfbox.util

Class DateConverter

	java.lang.Object
	
	org.apache.pdfbox.util.DateConverter

	

public class DateConverter
extends Object

This class is used to convert dates to strings and back using the PDF
 date standard in section 3.8.2 of PDF Reference 1.7.

	Author:
	Ben Litchfield, Fred Hansen

 TODO Move members of this class elsewhere for shared use in pdfbox, xmpbox, and jempbox.

	

	

Field Summary

Fields 	Modifier and Type	Field and Description
	static int	INVALID_YEAR
Error value if date is invalid.

	

Method Summary

Methods 	Modifier and Type	Method and Description
	static void	adjustTimeZoneNicely(GregorianCalendar cal,
 TimeZone tz)
Install a TimeZone on a GregorianCalendar without changing the
 hours value.

	static String	formatTZoffset(long millis,
 String sep)
Formats a time zone offset as #hh^mm
 where # is + or -, hh is hours, ^ is a separator, and mm is minutes.

	static String[]	getFormats()
Get all know formats.

	static GregorianCalendar	newGreg()
Construct a new GregorianCalendar and set defaults.

	static GregorianCalendar	parseBigEndianDate(String text,
 ParsePosition initialWhere)
Parses a big-endian date: year month day hour min sec.

	static Calendar	parseDate(String text,
 String[] moreFmts,
 ParsePosition initialWhere)
Parses a String to see if it begins with a date, and if so,
 returns that date.

	static GregorianCalendar	parseSimpleDate(String text,
 String[] fmts,
 ParsePosition initialWhere)
See if text can be parsed as a date according to any of a list of
 formats.

	static int	parseTimeField(String text,
 ParsePosition where,
 int maxlen,
 int remedy)
Parses an integer from a string, starting at and advancing a ParsePosition.

	static boolean	parseTZoffset(String text,
 GregorianCalendar cal,
 ParsePosition initialWhere)
Parses the end of a date string for a time zone and, if one is found,
 sets the time zone of the GregorianCalendar.

	static int	restrainTZoffset(long proposedOffset)
Constrain a timezone offset to the range [-14:00 thru +14:00].

	static char	skipOptionals(String text,
 ParsePosition where,
 String optionals)
Advances the ParsePosition past any and all the characters
 that match those in the optionals list.

	static boolean	skipString(String text,
 String victim,
 ParsePosition where)
If the victim string is at the given position in the text,
 this method advances the position past that string.

	static Calendar	toCalendar(COSString text)
Deprecated.
This method throws an IOException for failure. Replace
 calls to it with toCalendar(String, String[])
 and test for failure with
 (value == null || value.get(Calendar.YEAR) == INVALID_YEAR)

	static Calendar	toCalendar(String text)
Deprecated.
This method throws an IOException for failure. Replace
 calls to it with toCalendar(String, String[])
 using null
 for the second parameter
 and test for failure with
 (value == null || value.get(Calendar.YEAR) == INVALID_YEAR)

	static Calendar	toCalendar(String text,
 String[] moreFmts)
Converts a string to a calendar.

	static String	toISO8601(Calendar cal)
Converts the date to ISO 8601 string format:
 yyyy-mm-ddThh:MM:ss#hh:mm (where '#" is '+' or '-').

	static String	toString(Calendar cal)
Converts a Calendar to a string formatted as:
 D:yyyyMMddHHmmss#hh'mm' where # is Z, +, or -.

	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Field Detail

	
INVALID_YEAR

public static final int INVALID_YEAR

Error value if date is invalid. Parsing is done with
 GregorianCalendar.setLenient(false), so every date field value
 must be within bounds. If an attempt is made to parse an invalid date
 field, toCalendar(String, String[]) returns Jan 1 in year INVALID_YEAR.

	See Also:
	Constant Field Values

	

Method Detail

	
getFormats

public static String[] getFormats()

Get all know formats.

	Returns:
	an array containig all known formats

	
toString

public static String toString(Calendar cal)

Converts a Calendar to a string formatted as:
 D:yyyyMMddHHmmss#hh'mm' where # is Z, +, or -.

	Parameters:
	cal - The date to convert to a string. May be null.
 The DST_OFFSET is included when computing the output time zone.
	Returns:
	The date as a String to be used in a PDF document,
 or null if the cal value is null

	
toISO8601

public static String toISO8601(Calendar cal)

Converts the date to ISO 8601 string format:
 yyyy-mm-ddThh:MM:ss#hh:mm (where '#" is '+' or '-').

	Parameters:
	cal - The date to convert. Must not be null.
 The DST_OFFSET is included in the output value.
	Returns:
	The date represented as an ISO 8601 string.

	
restrainTZoffset

public static int restrainTZoffset(long proposedOffset)

Constrain a timezone offset to the range [-14:00 thru +14:00].

	Parameters:
	proposedOffset - A value intended to be a timezone offset.
	Returns:
	The corresponding value reduced to the above noted range
 by adding or subtracting multiples of a full day.

	
formatTZoffset

public static String formatTZoffset(long millis,
 String sep)

Formats a time zone offset as #hh^mm
 where # is + or -, hh is hours, ^ is a separator, and mm is minutes.
 Any separator may be specified by the second argument;
 the usual values are ":" (ISO 8601), "" (RFC 822), and "'" (PDF).
 The returned value is constrained to the range -11:59 ... 11:59.
 For offset of 0 millis, the String returned is "+00^00", never "Z".
 To get a "general" offset in form GMT#hh:mm, write
 "GMT"+DateConverter.formatTZoffset(offset, ":");

 Take thought in choosing the source for the millis value.
 It can come from calendarValue.getTimeZone() or from
 calendarValue.get(Calendar.ZONE_OFFSET). If a TimeZone was created
 from a valid time zone ID, then it may have a daylight savings rule.
 (As of July 4, 2013, the data base at http://www.iana.org/time-zones
 recognized 629 time zone regions. But a TimeZone created as
 new SimpleTimeZone(millisOffset, "ID"),
 will not have a daylight savings rule. (Not even if there is a
 known time zone with the given ID. To get the TimeZone named "xDT"
 with its DST rule, use an ID of EST5EDT, CST6CDT, MST7MDT, or PST8PDT.

 When parsing PDF dates, the incoming values DOES NOT have a TIMEZONE value.
 At most it has an OFFSET value like -04'00'. It is generally impossible to
 determine what TIMEZONE corresponds to a given OFFSET. If the date is
 in the summer when daylight savings is in effect, an offset of -0400
 might correspond to any one of the 38 regions (of 53) with standard time
 offset -0400 and no daylight saving. Or it might correspond to
 any one of the 31 regions (out of 43) that observe daylight savings
 and have standard time offset of -0500.

 If a Calendar has not been assigned a TimeZone with setTimeZone(),
 it will have by default the local TIMEZONE, not just the OFFSET. In the
 USA, this TimeZone will have a daylight savings rule.

 The offset assigned with calVal.set(Calendar.ZONE_OFFSET) differs
 from the offset in the TimeZone set by Calendar.setTimeZone(). Example:
 Suppose my local TimeZone is America/New_York. It has an offset of -05'00'.
 And suppose I set a GregorianCalendar's ZONE_OFFSET to -07'00'
 calVal = new GregorianCalendar(); // TimeZone is the local default
 calVal.set(Calendar.ZONE_OFFSET, -7* MILLIS_PER_HOUR);
 Four different offsets can be computed from calVal:
 calVal.get(Calendar.ZONE_OFFSET) => -07:00
 calVal.get(Calendar.ZONE_OFFSET) + calVal.get(Calendar.DST_OFFSET) => -06:00
 calVal.getTimeZone().getRawOffset() => -05:00
 calVal.getTimeZone().getOffset(calVal.getTimeInMillis()) => -04:00

 Which is correct??? I dunno, though setTimeZone() does seem to affect
 ZONE_OFFSET, and not vice versa. One cannot even test whether TimeZone
 or ZONE_OFFSET has been set; both have been set by initialization code.
 TimeZone is initialized to the local default time zone
 and ZONE_OFFSET is set from it.

 My choice in this DateConverter class has been to set the
 initial TimeZone of a GregorianCalendar to GMT. Thereafter
 the TimeZone is modified with adjustTimeZoneNicely(java.util.GregorianCalendar, java.util.TimeZone).

	Parameters:
	millis - a time zone offset expressed in milliseconds
 Any value is accepted; it is normalized to [-11:59 ... +11:59]
	sep - a String to insert between hh and mm. May be empty.
	Returns:
	the formatted String for the offset

	
parseTimeField

public static int parseTimeField(String text,
 ParsePosition where,
 int maxlen,
 int remedy)

Parses an integer from a string, starting at and advancing a ParsePosition.

	Parameters:
	text - The string being parsed. If null, the remedy value is returned.
	where - The ParsePosition to start the search. This value
 will be incremented by the number of digits found, but no
 more than maxlen. That is, the ParsePosition will
 advance across at most maxlen initial digits in text.
 The error index is ignored and unchanged.
	maxlen - The maximum length of the integer to parse.
 Usually 2, but 4 for year fields.
 If the field of length maxlen begins with a digit,
 but contains a non-digit, no error is signaled
 and the integer value is returned.
	remedy - Value to be assigned if no digit is found at the
 initial parse position; that is, if the field is empty.
	Returns:
	The integer that was at the given parse position. Or
 the remedy value if no digits were found.

	
skipOptionals

public static char skipOptionals(String text,
 ParsePosition where,
 String optionals)

Advances the ParsePosition past any and all the characters
 that match those in the optionals list.
 In particular, a space will skip all spaces.

	Parameters:
	text - The text to examine
	where - index to start looking.
 The value is incremented by the number of optionals found.
 The error index is ignored and unchanged.
	optionals - A String listing all the optional characters
 to be skipped.
	Returns:
	The last non-space character passed over.
 Returns a space if no non-space character was found
 (even if space is not in the optionals list.)

	
skipString

public static boolean skipString(String text,
 String victim,
 ParsePosition where)

If the victim string is at the given position in the text,
 this method advances the position past that string.

	Parameters:
	text - The text to examine
	victim - The string to look for
	where - The initial position to look at. After return, this will
 have been incremented by the length of the victim if it was found.
 The error index is ignored and unchanged.
	Returns:
	true if victim was found; otherwise false.

	
newGreg

public static GregorianCalendar newGreg()

Construct a new GregorianCalendar and set defaults.
 Locale is ENGLISH.
 TimeZone is "UTC" (zero offset and no DST).
 Parsing is NOT lenient. Milliseconds are zero.

	Returns:
	a new gregorian calendar

	
adjustTimeZoneNicely

public static void adjustTimeZoneNicely(GregorianCalendar cal,
 TimeZone tz)

Install a TimeZone on a GregorianCalendar without changing the
 hours value. A plain GregorianCalendat.setTimeZone()
 adjusts the Calendar.HOUR value to compensate. This is *BAD*
 (not to say *EVIL*) when we have already set the time.

	Parameters:
	cal - The GregorianCalendar whose TimeZone to change.
	tz - The new TimeZone.

	
parseTZoffset

public static boolean parseTZoffset(String text,
 GregorianCalendar cal,
 ParsePosition initialWhere)

Parses the end of a date string for a time zone and, if one is found,
 sets the time zone of the GregorianCalendar. Otherwise the calendar
 time zone is unchanged.

 The text is parsed as
 (Z|GMT|UTC)? [+-]* h [':]? m '?
 where the leading String is optional, h is two digits by default,
 but may be a single digit if followed by one of space, apostrophe,
 colon, or the end of string. Similarly, m is one or two digits.
 This scheme accepts the format of PDF, RFC 822, and ISO8601.
 If none of these applies (as for a time zone name), we try
 TimeZone.getTimeZone().

	Parameters:
	text - The text expected to begin with a time zone value,
 possibly with leading or trailing spaces.
	cal - The Calendar whose TimeZone to set.
	initialWhere - where Scanning begins at where.index. After success, the returned
 index is that of the next character after the recognized string.
 The error index is ignored and unchanged.
	Returns:
	true if parsed a time zone value; otherwise the
 time zone is unchanged and the return value is false.

	
parseBigEndianDate

public static GregorianCalendar parseBigEndianDate(String text,
 ParsePosition initialWhere)

Parses a big-endian date: year month day hour min sec.
 The year must be four digits. Other fields may be adjacent
 and delimited by length or they may follow appropriate delimiters.
 year [-/]* month [-/]* dayofmonth [T]* hour [:] min [:] sec [.secFraction]
 If any numeric field is omitted, all following fields must also be omitted.
 No time zone is processed.

 Ambiguous dates can produce unexpected results. For example:
 1970 12 23:08 will parse as 1970 December 23 00:08:00

	Parameters:
	text - The string to parse.
	initialWhere - Where to begin the parse. On return the index
 is advanced to just beyond the last character processed.
 The error index is ignored and unchanged.
	Returns:
	a GregorianCalendar representing the parsed date.
 Or null if the text did not begin with at least four digits.

	
parseSimpleDate

public static GregorianCalendar parseSimpleDate(String text,
 String[] fmts,
 ParsePosition initialWhere)

See if text can be parsed as a date according to any of a list of
 formats. The time zone may be included as part of the format, or
 omitted in favor of later testing for a trailing time zone.

	Parameters:
	text - The text to be parsed.
	fmts - A list of formats to be tried. The syntax is that for
 SimpleDateFormat
	initialWhere - At start this is the position to begin
 examining the text. Upon return it will have been
 incremented to refer to the next non-space character after the date.
 If no date was found, the value is unchanged.
 The error index is ignored and unchanged.
	Returns:
	null for failure to find a date, or the GregorianCalendar
 for the date that was found. Unless a time zone was
 part of the format, the time zone will be GMT+0

	
parseDate

public static Calendar parseDate(String text,
 String[] moreFmts,
 ParsePosition initialWhere)

Parses a String to see if it begins with a date, and if so,
 returns that date. The date must be strictly correct--no
 field may exceed the appropriate limit.
 (That is, the Calendar has setLenient(false).)
 Skips initial spaces, but does NOT check for "D:"

 The scan first tries parseBigEndianDate and parseTZoffset
 and then tries parseSimpleDate with appropriate formats,
 again followed by parseTZoffset. If at any stage the entire
 text is consumed, that date value is returned immediately.
 Otherwise the date that consumes the longest initial part
 of the text is returned.

 - PDF format dates are among those recognized by parseBigEndianDate.
 - The formats tried are alphaStartFormats or digitStartFormat and
 any listed in the value of moreFmts.

	Parameters:
	text - The String that may begin with a date. Must not be null.
 Initial spaces and "D:" are skipped over.
	moreFmts - Additional formats to be tried after trying the
 built-in formats.
	initialWhere - where Parsing begins at the given position in text. If the
 parse succeeds, the index of where is advanced to point
 to the first unrecognized character.
 The error index is ignored and unchanged.
	Returns:
	A GregorianCalendar for the date. If no date is found,
 returns null. The time zone will be GMT+0 unless parsing
 succeeded with a format containing a time zone. (Only one
 builtin format contains a time zone.)

	
toCalendar

public static Calendar toCalendar(COSString text)
 throws IOException

Deprecated. This method throws an IOException for failure. Replace
 calls to it with toCalendar(String, String[])
 and test for failure with
 (value == null || value.get(Calendar.YEAR) == INVALID_YEAR)

Converts a string to a Calendar by parsing the String for a date.

	Parameters:
	text - The COSString representation of a date.
	Returns:
	The Calendar that the text string represents.
 Or null if text was null.
	Throws:
	IOException - If the date string is not in the correct format.
	See Also:
	The returned value will have 0 for DST_OFFSET.

	
toCalendar

public static Calendar toCalendar(String text)
 throws IOException

Deprecated. This method throws an IOException for failure. Replace
 calls to it with toCalendar(String, String[])
 using null
 for the second parameter
 and test for failure with
 (value == null || value.get(Calendar.YEAR) == INVALID_YEAR)

Converts a string date to a Calendar date value; equivalent to
 toCalendar(String, String[]) using null
 for the second parameter,
 but throws an IOException for failure.

 The returned value will have 0 for DST_OFFSET.

	Parameters:
	text - The string representation of the calendar.
	Returns:
	The Calendar that this string represents
 or null if the incoming text is null.
	Throws:
	IOException - If the date string is non-null
 and not a parseable date.

	
toCalendar

public static Calendar toCalendar(String text,
 String[] moreFmts)

Converts a string to a calendar. The entire string must be consumed.
 The date must be strictly correct; that is, no field may exceed
 the appropriate limit. Uses parseDate(java.lang.String, java.lang.String[], java.text.ParsePosition) to do the actual parsing.

 The returned value will have 0 for DST_OFFSET.

	Parameters:
	text - The text to parse. Initial spaces and "D:" are skipped over.
	moreFmts - An Array of formats (as Strings) to try
 in addition to the standard list.
	Returns:
	the Calendar value corresponding to the date text.
 If text does not represent a valid date,
 the value is January 1 on year INVALID_YEAR at 0:0:0 GMT.

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

	Prev Class
	Next Class

	Frames
	No Frames

	All Classes

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2002–2017 The Apache Software Foundation. All rights reserved.

